

Millions of lives have been saved due to biomaterials and the quality of life for millions more is improved every year due to biomaterials.

Impact of Biomaterials

Introduction

Clinical applications

A Little History on Biomaterials

- Romans, Chinese used gold in dentistry over 2000.
- Ivory & wood teeth
- Bone plates 1900, joints 1930
- 1960- Polyethylene and stainless steel being used for hip implants

History (cont.)

- Before 1950: Metals and alloys used for dental and orthopedic surgery
 Polyester Tricot used as vascular prosthesis
- Note: Materials not designed initially for medical applications Fatigue tests, Resistance to corrosion, chemical effects tested later
 - After WWII: Quality control procedures applied to production of biomaterials to avoid toxic effects
 - 1970's: Titanium (low density and toxicity, High resistance to failure and corrosion) replaced Nickel in orthopedic applications
 - 1992 : the Total Artificial Heart, that can simulate a natural shape of a pulse pressure is patented
 - Today: 3rd generation biomaterials: Smart systems- Systems used for cells regeneration

 Page 5		ALID		MECH634	634	

Evolution

Biomaterials:

- First developed to replace organs that no longer function in the proper manner
 - Impaired function can be cause by inherited defects, old age, disease, accidents ...
 - As our understanding of tissues, disease, and trauma improved, the concept of attempting to repair damaged tissues emerged
 - More recently, with the advent of stem cell research, medicine believes it will be possible to regenerate damaged or diseased tissues by cell-based tissue engineering approaches

Page 6	
--------	--

Total US health care expenditures (2000)	\$1.400.000.000.000
Total US health research and development (2001)	\$82,000,000,000
Number of employees in the medical device industry (2003)	300.000
Registered US medical device manufacturers (2003)	13.000
Total US medical device market (2002)	\$77.000.000.000
US market for disposable medical supplies (2003)	\$48,600,000,000
US market for biomaterials (2000)	\$9.000.000.000
Individual medical device sales:	
Diabetes management products (1999)	\$4.000.000.000
Cardiovascular devices (2002)	\$6.000.000.000
Orthopaedic-Musculosceletal Surgery (US, 1998)	\$4.700.000.000
Wound care US market (1998)	\$3.700.000.000
In Vitro diagnostics (1998)	\$10.000.000.000
Numbers of Devices (US)	
Intraocular lenses (2003)	2,500,000
Contact lenses (2000)	30.000.000
Vascular grafts	300.000
Heart valves	100.000
Pacemakers	400.000
Blood bags	40.000.000
Breast prosthesis	250.000
Catheters	200.000.000
Heart-lung (oxygenators)	300.000
Coronary stents	1.500.000
Renal dialysis, number of patients (2001)	320.000
Hip prosthesis (2002)	250.000
Knee prosthesis (2002)	250.000
Dental implants (2000)	910.000

Definition I

Williams in 1987 defined a biomaterial as "a nonviable material used in a medical device, intended to interact with biological systems." This definition still holds true today and encompasses the earliest use of biomaterials replacing form (e.g., wooden leg, glass eye) as well as the current use of biomaterials in regenerative medical devices such as a biodegradable scaffold used to deliver cells for tissue engineering.

Definition II

A biomaterial is "any substance (other than drugs) or combination of substances synthetic or natural in origin, which can be used for any period of time, as a whole or as a part of a system which treats, augments, or replaces any tissue, organ, or function of the body".

Biocompatibility — The ability of a material to perform with an appropriate host response in a specific application.

Host Response — The response of the host organism (local and systemic) to the implanted material or device.

Page 10	AUB	MECH634

Definition III

Page 11

Definition of a Biomaterial

Biomaterial (def.) = A biomaterial is a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure.

AUB

MECH634

D.F Williams, Medical Device Technology, october 2009

Definition IV

Biomaterials: definition

 Materials that constitute parts of medical implants, extracorporeal devices, and disposables that have been utilized in medicine, surgery, dentistry, and veterinary medicine as well as in every aspect of patient health care (Dee et al.)

Biocompatible material features

- 1) Absence of carcinogenicity (the ability or tendency to produce cancer)
- 2) Absence of <u>immunogenicity</u> (absence of a recognition of an external factor which could create rejection)
- 3) Absence of teratogenicity (ability to cause birth defects)
- 4) Absence of toxicity

Keywords

- Metallic/glass/Polymeric/Ceramic/Composite
- Fracture/fatigue/creep/corrosion/degradation
- Tissue response/healing/biocompatibility/host response/carcinogenicity
- Hard/soft tissue implants
- Vascular/Breast/Urological/Art. Organ
- Mucosal contacting ...

Page 14

Wright Medical Technology- Interesting Idea !

The REPIPHYSIS® works by inserting an expandable implant made from titanium in an aerospace polymer into the child's healthy bone, after which standard recovery and rehabilitation are expected. However, instead of undergoing repeated surgeries to extend the bone, the REPIPHYSIS® uses an electromagnetic field to slowly lengthen the implant internally.

Page	15
------	----

Material Selection Parameters

Mechanical **Thermal/Electrical Conductivity** Diffusion □ Water Absorption Biostability Biocompatibility Page 16 AUB **MECH634**

Test Conditions:

	Value	Location
pH	6.8	Intracellular
	7.0	Interstitial
	7.15-7.35	Blood
pO ₂	2-40	Interstitial (mm Hg)
	40	Venous
	100	Arterial
Temperature	37	Normal Core
	28	Normal Skin
Mechanical Stress	$ \begin{array}{c} 20 \\ 4x10^{7} \text{ N m}^{-2} \\ 4x10^{8} \text{ N m}^{-2} \\ 3x10^{5} \\ \end{array} $	Muscle (peak stress)
	$4 \times 10^8 \text{ N m}^{-2}$	Tendon (peak stress)
Stress Cycles (per year)	$3x10^{5}$	Peristalsis
	$5x10^{6} - 4x10^{7}$	Heart muscle contraction

An Interdisciplinary Field

Journals

****		Biomaterials World News	
	>	Materials Today	
		Nature	
	\succ	Journal of Biomedical Materials Research	
	\succ	Cells and Materials	
		Journal of Biomaterials Science	
	\succ	Artificial Organs	
		ASAIO Transactions	
		Tissue Engineering	
	\succ	Annals of Biomedical Engineering	
		Medical Device Link	
		see: http://www.biomat.net/biomatnet.asp?group=1_5	
		Page 21 AUB MECH634	4

Clinical applications

INTRODUCTION TO BIOMATERIALS

Applications for Medical Devices

1)Total implanted device

2)Partially implanted device

3)Totally externals device

Some examples

Kenny Bräck- 34 screws of titanium, cobolt and stainless steel

Kenny Bräck- 34 screws of titanium, cobolt and stainless steel

Uses of Biomaterials

Some Commonly Used Biomaterials

Material Silicone rubber Dacron Cellulose Poly(methyl methacrylate) Polyurethanes Hydogels Stainless steel Titanium Alumina Hydroxyapatite Collagen (reprocessed)

Applications Catheters, tubing Vascular grafts **Dialysis membranes** Intraocular lenses, bone cement Catheters, pacemaker leads Opthalmological devices, Drug Delivery Orthopedic devices, stents Orthopedic and dental devices Orthopedic and dental devices Orthopedic and dental devices Opthalmologic applications, wound dressings

Page 27

AUB

MECH634

Categories of implantable materials	Composition	Use	
	Gore-Tex(PTFE expanded)	Thoracic and abdomen rebuilding Filling Defect of the soft tissue Cranio-facial reconstruction	
	Poly-propylene (Marlex, Prolene)	Thoracic and abdominal wall reconstruction Surgical Suture	
	Poly-ethylene (Medpore)	Filling Defect of the soft tissue	
Polymers carbon	Poly-ethylene tereftalato (Dacron,Mersilene)	Surgical Suture Vascular prosthesis	
	Poliuretano	Coating of breast implants	
	Polyesters aliphatic (ac. Poly-latic, poly-glycolic ecc.)	Surgical Suture Absorbable mini plates and screws	
	Metilmetacrilato (MMA)	Thoracic and abdomen rebuilding Cranio-facial reconstruction	
Page 28	AUB	МЕСН63	

Applications Types of Materials					
Skeletal system					
Joint replacements (hip, knee)	Titanium, Ti-Al-V alloy, stainless steel, polyethylene				
Bone plate for fracture fixation	Stainless steel, cobalt-chromium alloy				
Bone cement	Poly (methyl acrylate)				
Bony defect repair	Hydroxyapatite (HA)				
Artificial tendon and ligament	Teflon, Dacron				
Dental implant for tooth fixation	Titanium, Ti-Al-V alloy, stainless steel, alumina, CaP, polyethylene				
Cardiovascular system					
Blood vessel prosthesis	Dacron, Teflon, polyurethane				
Heart valve	Reprocessed tissue, stainless steel, carbon materials				
Catheter	Silicone rubber, Teflon, polyurethane				
Organs					
Artificial heart	Polyurethane				
Skin repair template	Silicone – collagen composite				
Artificial kidney (hemodialyzer)	Cellulose (modified), polyacrylonitrile				
Heart-lung machine	Silicone rubber				
Senses					
Cochlear replacement	Platinum eletrodes, titanium				
Intraocular lens	Poly (methyl acrylate), silicone rubber, hydrogels (variety of)				
Contact lens	Silicone-acrylate, hydrogels				
Corneal bandage	Collagen, hydrogels				

Categories of implantable materials	Composition	Use Breast implants Prosthetics for increased facial characteristics		
Not carbon Polymers	Silicon			
	Hydroxyapatite	Small cellular defects reconstruction		
Ceramics	Phosphate tricalcium	Small bone defect reconstruction		
Metals	Titanium, stainless steels and cobalt and magnesium alloys	Mini plates and screws Orthopedic prosthesis Surgical tools		
		MECH63		

-(),

What's a biodegradable implant?

- Once implanted, should maintain its mechanical properties until it is no longer needed and then be absorbed and excreted by the body, leaving no trace
- Biodegradable implants are designed to overcome the disadvantages of permanent metal-based devices

Problems caused by permanent implants

- Physical irritations
- Chronic inflammatory local reactions
- Thrombogenicity and long term endothelial dysfunction (for cardiovascular applications)
- Inability to adapt to growth
- Not allowed or disadvantageous after surgery
- Stress shielding, corrosion, accumulation of metal in tissues (for internal fixation applications)

AUB

MECH634

Repeat surgery necessary

Page 32

Advantages of biodegradable implants

- More physiological repair
- Possibility of tissue growth
- Less invasive repair
- Temporary support during tissue recovery
- Gradual dissolution or absorption by the body afterwards.

Note: these implants may act a new biomedical tool satisfying requirement of compatibility and integration.

 Page 33
 AUB
 MECH634

Problems/test for w Biomaterials

• Acute toxicity (cytotoxicity) arsenic Sub chronic/chronic Pb Sensitization Ni, Cu Genotoxicity Carcinogenicity Reproductive &/or developmental Pb Neurotoxicity Immunotoxicity Pyrogen, endotoxins Page 34 AUB

MECH634

FDA & ISO 10993

 FDA mandates tests based on length of contact (24 Hr, 1-30 Days, >30 days) See table for details ISO 10993 – required for European **Union** Certification See FDA Device Categories & examples Page 35 AUB **MECH634**

First Generation Implants

- "ad hoc" implants
 - specified by physicians using common and borrowed materials
- most successes were accidental rather than by design

Examples — First Generation Implants

- gold fillings, wooden teeth, PMMA dental prosthesis
- steel, gold, ivory, etc., bone plates
- glass eyes and other body parts
- dacron and parachute cloth vascular implants

Page 36
Intraocular Lens

3 basic materials - PMMA, acrylic, silicone

Vascular Grafts

Second generation implants

- engineered implants using common and borrowed materials
- developed through collaborations of physicians and engineers
- built on first generation experiences
- used advances in materials science (from other fields)

Examples — Second generation implants

- titanium alloy dental and orthopaedic implants
- cobalt-chromium-molybdinum orthopaedic implants
- UHMW polyethylene bearing surfaces for total joint replacements
- heart valves and pacemakers

Page 39

Artificial Hip Joints

http://www.totaljoints.info/Hip.jpg

Page 40	AUB	MECH634

Third generation implants

- bioengineered implants using bioengineered materials
- few examples on the market
- some modified and new polymeric devices
- many under development

Example - Third generation implants

Substitute Heart Valves

Advances in Biomaterials Technology

- Cell matrices for 3-D growth and tissue reconstruction
- Biosensors, Biomimetic , and smart devices
- Controlled Drug Delivery/ Targeted delivery
- Biohybrid organs and Cell immunoisolation
 - New biomaterials bioactive, biodegradable, inorganic
 - New processing techniques

Page 44	-
---------	---

Biomaterials - An Emerging Industry

 Next generation of medical implants and therapeutic modalities

- Interface of biotechnology and traditional engineering
- Significant industrial growth in the next 15 years -- potential of a multi-billion dollar industry

Page 47

AUB

MECH634

Biomaterials Companies

- BioForma Research & Consulting, Inc., fibrinolytic systems, protein-material interactions
- Baxter International develops technologies related to the blood and circulatory system.
- **Biocompatibles Ltd.** develops commercial applications for technology in the field of biocompatibility.
 - **Carmeda** makes a biologically active surface that interacts with and supports the bodys own control mechanisms
- **Collagen Aesthetics Inc.** bovine and human placental sourced collagens, recombinant collagens, and PEG-polymers
- Endura-Tec Systems Corp. bio-mechanical endurance testing ofstents, grafts, and cardiovascular materials
- **Howmedica** develops and manufactures products in orthopaedics.
- MATECH Biomedical Technologies, development of biomaterials by chemical polymerization methods.
 - Medtronic, Inc. is a medical technology company specializing in implantable and invasive therapies.
 - Molecular Geodesics Inc., biomimetic materials for biomedical, industrial, and military applications
 - Polymer Technology Group is involved in the synthesis, characterization, and manufacture of new polymer products.
 - SurModics, offers PhotoLink(R) surface modification technology that can be used to immobilize biomolecules
- W.L. Gore Medical Products Division, PTFE microstructures configured to exclude or accept tissue ingrowth.
- Zimmerpelesigns manufacture and distribution of orthopardig implants and related equipment and sweeting 34

What are some of the Challenges?

- To more closely replicate complex tissue architecture and arrangement *in vitro*To better understand extracellular and intracellular modulators of cell function
- To develop novel materials and processing techniques that are compatible with biological interfaces
- To find better strategies for immune acceptance

Page 49	l

Disciplines involved in biomaterials science and the path from a need to a manufactured medical device			
Action	Facilitator		
Identify a Need			
treat a condition	Physician/Dentist		
replace an organ	Researcher		
cosmetic	• Inventor		
Device Design	Physician, Engineer		
Materials Synthesis	Ceramicist, Metallurgist, Polymer Chemist		
Materials Testing			
mechanical properties	Bioengineer		
toxicology	Mechanical engineer		
biorection to the material	Biochemist		
protein interactions, cell interactions, tissue reaction	• V eterinarian		
Fabrication	Engineer, machinist		
Sterilization and Packaging	Bioengineer, industrial designer		
Device Testing			
toxicology	Bioengineer		
In Vitro biointeractions	Physician/dentist		
animal testing			
Regulatory			
pre-market approval	Regulatory specialist		
limited clinical study	Regulatory agency		
clinical trials	Congress		
long-term follow-up			
Clinical Use	Physician, dentist, optometrist		
Explant Analysis			
explant registry	Pathologist		
pathological examination	• Bioengineer		
testing to understand failure	*		

Application: LVAD

Some Key Questions in Biomaterials

- Can patient retain her/his body part (hip, tooth, eye lens, heart, etc)?
- If replacement necessary, how do patient obtain an optimal recovery?
- Artificial material or autologous tissue? Replacement organ?
- If artificial material, which?
- Functionality? Prosthesis design?
- Cyclic mechanical loading?
- Durability of prostheses? Patient age.
- Biocompatibility? Integration.
- Blood compatibility?
- Immune reactions?
- Chemical tolerability?
- Cell toxicity and cell differentiation?
- Ethics (animals, humans, company funding/maximal earning, publishing,..)